
41 

The structure of the jet-stream in a rotating fluid 
with a horizontal temperature gradient 

By RUTH H. ROGERS 
Department of Mathematics, University of Manchester* 

(Received 28 June 1958) 

The jet-stream in a rotating fluid is treated as a thermal boundary layer, but 
viscous effects are omitted from the first approximation. A theoretical justifica- 
tion for this treatment is presented, and a particular solution of the resulting 
equations is found. This solution is shown to give a reasonable picture of the flow 
in the neighbourhood of the stream far from solid boundaries. 

1. Introduction 
The problem of the convection of a rotating fluid subject to differential heating 

has been considered in recent years by workers in two fields. Meteorologists are 
concerned with a rotating atmosphere heated from below: heat is supplied at  the 
equator, and is removed to outer space via the poles. Geophysicists are concerned 
with the motion of the earth’s core, which also rotates and is assumed to be 
differentially heated. Both groups of workers have devised laboratory experi- 
ments to investigate the problem more thoroughly, and although the method 
of heating varies, the phenomena observed are essentially the same. The experi- 
ments have been described by Hide (1956, 1958), Fultz (1951) and Riehl & Fultz 
(1957). 

In each case, the motion relative to the rotating apparatus is observed to be 
symmetrical about the axis of rotation (which is vertical) for sufficiently high 
Rossby numbers. The appropriate parameter, which is related to a Rossby 
number, has been expressed by Hide in the formt 

where g is the acceleration due to gravity, d is the depth of the working fluid, 
w is the angular velocity of the apparatus, a and b are the radii of the containing 
cylinders, Ap is the applied horizontal density difference across the cylinders, 
and po is the mean density of the fluid. He finds that the flow is symmetrical when 
0 is greater than 0.4. When 0 is less than its critical value, the motion becomes 
asymmetric relative to the apparatus: most of the motion is concentrated into a 
narrow stream which meanders from boundary to boundary forming a number of 
equal lobes. A picture of the surface of a three-lobe formation obtained in experi- 
ments by the author at Manchester is shown in figure 1 (plate 1). By analogywith 

* Now at Royal Aircraft Establishment, Farnborough, Hants. 
t Hide defines 0 as four times the value given in (1). 
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similar narrow streams sometimes observed in the atmosphere, this is usually 
called the ‘jet-stream’. There is some doubt as to the accuracy of this analogy, 
because there are so many more variables in the atmospheric motions than in the 
experimental flows (for example, in the atmosphere the Coriolis parameter varies, 
and there are considerable surface irregularities not present in the laboratory 
experiment). It seems likely, however, that some of the atmospheric jet-streams 
have similar causes to the experimental ones. There are slow circulations in the 
remainder of the fluid, but these are very small. Similar streams have been 
obtained by Fultz, although his method of heating is slightly different from that 
of Hide; he supplies heat from below the fluid, in an attempt to simulate more 
closely the conditions in the atmosphere. 

The theory of the symmetrical mode of flow has been studied in detail by 
Davies (1953), by Lance & DeLand (1957), and by Lance (1958). The instability 
of this flow has been investigated by Davies (1956), Chandrasekhar (1953) and 
Kuo (1954). But no completely successful attempt has been made to solve the 
problem of the existence of the jet-stream itself. This paper is an attempt to find 
some simplifying assumptions which may help towards a solution of this problem, 
but does not claim to do more than suggest an approach. 

The equations of motion are first put into a non-dimensional form containing 
the parameter 0. Approximations are made by taking 0 to be small, and then 
expanding in powers of 0. A particular solution of the first approximation is 
found in the form of a jet-stream, and this can be valid in the stream itself except 
where it meets the boundaries. The vertical velocity vanishes in the first approxi- 
mation, but is given in the second. It is also shown that the equations of motion 
of the atmosphere can be reduced to a form identical with that discussed here, 80 

that a similar solution exists in this case. 

2. 

coefficient of thermal expansion, a,, so that its equation of state is given by 

The equations of motion in the laboratory experiment 
The liquid in which the motion takes place is assumed to have a constant 

wherep is the density corresponding to the temperature T, and p,, To are reference 
density and temperature. This is a good approximation for all liquids except water 
near its freezing-point. 

It is contained between coaxial cylinders of radii a and b,  and has a depth d ;  the 
upper surface is free. The common axis of the cylinders is vertical, and the 
apparatus rotates with angular velocity o about this axis. We choose a right- 
handed system of Cartesian axes Oxyz, which rotates with the apparatus; Ox is 
chosen to be along the surface jet-stream, and Oz to be vertically upwards. The 
sense of Ox is the same as the direction of rotation. A more precise specification 
of the axes will be given later: here we have only that the direction of motion is 
roughly along Ox, and that density and velocity gradients are essentially parallel 
to 03. This is sufficient to allow us to make a boundary-layer type of approxima- 
tion later. 
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It is easily shown that, in a liquid, the effect of variable density enters the 
equations of motion only in the buoyancy term. In  the horizontal momentum 
equations, and in the equation of continuity, then, we can replace p by its mean 
value, which we choose to be the reference density po of equation (2). 

The effect of rotation is evident in the Coriolis and centrifugal terms in the 
horizontal momentum equations. Since only low rates of rotation are considered, 
the centrifugal terms are neglected, as is usual also in the equations of motion of 
the atmosphere. This is justified by the experimental observation that the surface 
of the rotating fluid does not assume the form of a paraboloid signihantly different 
from the special case of a horizontal plane, for rotations at  which the jet-stream 
occurs. 

FIQURE 2. The co-ordinate system. 

At this stage we can write the equations of horizontal momentum, the hydro- 
static equation of vertical equilibrium, the equation of continuity, and the 
equation of heat transfer in the form 

av av av 1 ap (azv azv azv) 
ax ay ax poaY ax2 a y 2  a22 3 

u-+v-+w-+2uu = ---+v -+-+- 

au at, aw 
ax ay aZ -+-+- = 0, 

aT aT aT 
U-+W-+W-=K ax ay ax 

where p is the pressure at  the point (x, y, x ) ,  u, v, w are the components of velocity 
of the fluid parallel to the axes at  this point, v is the kinematic viscosity of the 
liquid and K its thermal diffusivity. It is assumed that the motion is steady, and 
that the frictional dissipation terms in the equation of heat transfer are negligible. 

An immediate simplification to these equations can be made by the assumptions 
of boundary-layer theory. We note that v is very much smaller than w, and that 
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variations of the dependent variables in the direction of Oy are much more rapid 
than in the directions of Ox and Oz; but we assume that au/ax and avlay are of the 
same order of magnitude. The momentum equations (3) and (4) then reduce to 

au au au 1 ap a Z u  

ax ay aZ PoaX a y Z 9  
u-+v-+w--2wv = ---+v- 

and the heat transfer equation (7)  becomes 

We can inco~porate the equation of state (2) in the hydrostatic equation (5) 
to give 

(11) 
aP 
aZ 

aP 

g~o-gao(T-To) = --. 

The equations (6), (8), (9) and ( 1 1) can now be rearranged in the form 

(12) POT = S(Po+aoTo)+p  

Formally, the problem is now solved: for (13) and (13) give T and u in terms of 
p ,  (15) can be solved to give w in terms of p ,  and then (14) used to give w in 
terms of p .  It then remains only to substitute these expressions for T ,  u, v, w 
in the equation (lo), and solve the resulting equation in p. Unfortunately, this is 
intractable, and we have to simplify further. 

We look for further simplifying assumptions by defining non-dimensional 
co-ordinates ( X ,  Y ,  Z) ,  velocities ( U ,  7, W ) ,  pressure P and temperature T, as 
follows. We take firat 

= k ( b - a ) X ,  y = (b-a)  Y ,  z = dZ, (16) 

where k is a scale factor to be defined more precisely later; here we note only that 
k is very much greater than unity. Then we take for the velocities 

2 4  b - a )  2wd 
8, w = y w ,  k u = 2w(b-a)  U ,  v = ~ k 
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where k' is another scale factor; k occurs in thedenominator of v, so that aupxand 
avlay are of the same order. Finally, we take 

1, = - g ( p , + a , ~ , ) ~ + ( g d A p ) P ,  a,T = APT, (18) 

where Ap is the density 
perature difference AT. 

where 

difference corresponding to the applied horizontal tem- 
Substituting in the equations (12) to (15), we obtain 

where 
sional variables, and substituting for U and V ,  in (IQ), we have 

= V / K  is the Prandtl number of the fluid. Introducing the non-dimen- 

We can now be more specific about the scale factors k and k'. Since k' occurs only 
in the ratio klk' when this multiplies W ,  we can take k = k' without loss of 
generality. The factor k occurs only in the expression 2w~kp, /gdAp.  It seems 
reasonable, then, to define 

This ratio was found to be of the order of 1000 in the experiments carried out in 
Manchester by the present author, and so satisfies the condition that k is very 
much greater than unity. This definition implies that the terms on both sides of 
equation (32) are of equal importance; that is, that transfer of heat occurs both 
by conduction and convection. It follows immediately from (21) and (21 a), that 
the viscous terms are of the same order of magnitude as the inertia terms (as long 
as cr does not differ greatly from unity). If a smaller value of k is chosen so that 
the conduction term on the right of equation (22) is negligible, that is, if 

then the viscous term in the expression for B is also negligible compared with the 
inertia terms, unless CT is much greater than unity. If k is very much larger than 
the value given in (23), so that the convection terms on the left of equation (22) 
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are negligible, then the temperature field is independent of the velocity field, and 
viscous terms may be of importance. These are the assumptions made by Davies 
in his theories of the symmetrical regime and its instability. We now have the 
simpler expressions for V )  9 and a W/aZ, as follows: 

where 

Equation ( 2 2 )  can be written 

The only parameter entering into this set of equations is 0, and this is known 
to be small. It seems reasonable to look for a solution in powers of 0. We write 

so that 

These variables satisfy the equations 

where 

We have from (27) that 

and more complicated expressions relating W, and Pl) etc. 
In  the first approximation we have 

3 = o or W, = constant; az 
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it follows at  once that W, = 0 everywhere. Equation (28)  now simplifies further to 

If this equation can be solved, an expression for 8, can be obtained, which can be 
used to find the form of aW,/aZ without difficulty. We have 

It is difficult to define precise boundary conditions at this stage; they will 
depend to a considerable extent on how much of the motion we try to describe 
by the above equations. Further discussion of this problem is postponed until 
a solution of (29)  has been found. 

T. V. Davies has pointed out that in the first approximation, the equation of 
heat transfer can be written in the form 

apaT apaT a2T a2T 

ay ax ax ay 
+-- = 2WPOK -+- , ( ax2 a y 2 )  

--- 

where the term representing conduction in the vertical is now the only one 
omitted. This equation is left unchanged by a conformal transformation in the 
xy-plane. It follows that we lose no generality by taking rectangular axes, and 
assuming that the stream flows parallel to Ox; for any solution so obtained is still 
valid after a conformal transformation designed to transform Ox into some other 
curve. 

If the first approximation is used with the equations in cylindrical polar form, 
and we assume that variations with respect to r are much greater than those with 
respect to 8, the fundamental equation to be solved for p is 

Writing R = log r,  this reduces to the form 

and this is of the same form as in local Cartesian co-ordinates with y replaced by 
R = logr, and x replaced by 8. 

3. A particular solution of the approximate equation 
We have essent,ially to solve equation (29) ,  but it is more convenient to return 

to physical variables at this stage. In  the first approximation, we have to neglect 
all inertia terms and viscous terms in equation (8 ) ,  put w = 0 in (10) and leave (9) 
and (1 1) as they stand. We can eliminate the hydrostatic part of the pressure from 
the problem by writing 

Then (1 1) becomes 

(32) 

(33) 

P = - g ( P , + ~ o ~ , ) ~ + P o ~  

0 g aZ 
a T = - L ,  1 aP 
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and equations (8) and (9) give 
u = - L & ,  v=--. 1 aP0 

2WPo a Y  2wp0 ax (34) 

The equation of continuity (B), is automatically satisfied, since w = 0. The heat 
transfer equation (10) now gives 

One of the properties of the jet-stream of the experiments is its approximately 
constant width. This suggests a solution of the form 

Po = PAX, 2) P2(Y). 

Such a solution of equation (35) is possible if 

dP2 d2P2 
d9 dY2 

p,-CC-. 

This implies that either p2(y) = tan(y/yo), which does not correspond to the 
physical problem, or 

where yo is an arbitrary constant. Taking this value of p,, (35) becomes 

P 2 ( Y )  = tanh (YIYO), 

the general solution of this equation is 

p, = -___ ~ ~ P O K ~ ~ F , ( X )  +G,(z) 
Yo p ; ( 4  ’ 

where F,(x), G,(z) are arbitrary functions of x, z respectively. We have, therefore, 
a solution of the form 

The corresponding values of T, u, v are given by equations (33) and (34) in the 
form 

This is the simplest solution we can find of the equation, and it is worth con- 
sidering its nature. It certainly describes a jet-stream in the direction of Ox, 
which is a streamline, an isotherm, and a line of maximum velocity. There is a 
horizontal temperature gradient across the stream of magnitude 
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and the temperature itself approaches a limit on each side of the stream. The 
‘width’ of the stream can be taken as 3y,, since sech2 3 = 0.01 and tanh 3 = 0-995; 
so, for I yI greater than or equal to 3y0, u and aT/ay are less than 1 % of their values 
on y = 0, and T is within 8 yo of its limiting value. The cross-velocity, v, is an odd 
function of y ,  so that there is either an inflow towards y = 0, or an outflow from 
y = 0; this solution gives no velocity across y = 0. 

The general functions Pl(x) and G,(z) are difficult to determine, because of the 
lack of precise boundary conditions. It is convenient to discuss them in terms of 
the density difference across the stream 

and the velocity on the x-axis 

The function Gi(z)  can be left arbitrary: in the Chicago experiments of Fultz 
and his co-workers, where the fluid is heated from below, it is certainly not 
a constant; in the Cambridge and Manchester experiments, an attempt to make 
the boundary temperatures independent of z is made, but there are certainly 
vertical temperature gradients in the fluid. It is of interest, however, to note that 
there does exist a formal solution for the case in which there are no vertical 
temperature gradients; in this case, the velocity increases linearly with z. We 
note that the vertical conduction term a2T/az2 in the heat transfer equation is 
then identically zero (not merely negligible, as assumed in the derivation). 

The function F,(x) is more troublesome. We note first that Pi(x) has always the 
same sign (or is zero), since (Ap)’, as given by (4l), cannot change sign with x. It 
follows that Fl(x) is a monotonic function of x, and cannot be periodic. Hence, 
either Pl(x)/Pi(x) or Pi(x) itself is monotonic, and u cannot be periodic in x as 
long as it is continuous. Since the jet-stream touches one or other boundary at 
certain values of x, and there is a sudden temperature change at such a point, it 
is not unreasonable to obtain discontinuities in the solution. 

As a possible example, we consider 

”,(”’ - A+Bcos2mx ( B  <A) .  plo- 
After integration and some manipulation, we obtain 

1 A + B cos 2mx e-e,mz8, -- 
Pi(4 - C 

where 

If we always choose - &r < 8 < &r, then the exponential factor in the expression 
for l/P;(x) is periodic, with a period in x of n/2m; the cos 2mx term has a period in 
x of n/m. As x increases, the exponential term decreases-this corresponds to a 
decrease in l/F‘(x), and hence in (Ap)’, as the stream gets further from a boundary. 
When it reaches the other boundary, there is a sudden increase in (Ap)’-that is, 
a discontinuous increase in l/Fi( x). The factor ( A  + B cos 2mx) oscillates about 

4 Fluid Mech. 6 

a2 = A + B, p2 = A - B, tan 8 = (p/a) tan mx. 
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the constant value A ,  never changing sign; it has twice the period of the ex- 
ponential factor, and passes through the value A at each discontinuity of 8. The 
way in which 8 varies with x is shown in figure 3. 
Wecanconsideroneintervalofthissolutiononly, taking - (n/2m) < x < (n/2m), 

say. If B is very much less than A, so that ,I3 is approximately equal to a, we can 
write 8 = pmx/a approximately within the interval; also, to this approximation 

- _ _ _ _  , q = mx + constant 

, ~ = e  
tan0zztan B mx 

FIGURE 3. The variation of the function 0 with 2. 

This gives, for T, u and v in any interval far from the boundary 

Such a solution implies that during the passage from one boundary to another, 
the temperature difference across the stream, and the velocity u decrease slightly, 
and that there is an outflow everywhere which also decreases in magnitude as 
xincreases. (In theexperiment, thereis almost certainly a cross-flow, but this may 
appear in this solution only in the second approximation.) The approximate 
particular solution of equations (43) can be fitted into the experimental pattern 
as shown in figure 4, where the dotted lines indicate the slow circulations which 
take place outside the jet-stream. 

It is not suggested that this is the best form of the function F1(z), but it is put 
forward as a possible one; it is probably the simplest. The jet-stream described 
by this solution does not obviously differ from that observed in a fundamental 
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way, although the mechanism of transition between the jet-stream and the slow 
circulations described above is not obvious. 

We can relate the solution of equation (43) more closely to experiment, if we 
incorporate the constant C in the arbitrary function G,, and write 

or (44) 

Then we have a 0 T = - 9 A p  G;(z) ecXlA tanh y/yo, 

2K 
v = - G,(z) ecxlA tanh y/yo. 

Yo 

We note that 

and this is to be compared with the scale-factor k defined by equation (23). It is 
certainly smaller than k, by a factor of yo/4d, but is probably still large enough to 
justify the retention of the conduction term. A study of the separate terms of the 

FIGURE 4. A particular solution of the first approximation. 

heat-transfer equation indicate that the conduction is balanced entirely by the 
convection due to the part of u which is independent of z (this is true of the 
general equation); since u varies considerably with height, it seems likely that 
this is the smaller term, and this is consistent with a small conduction term. 

We can equate A ,  which is essentially the scale ofx, to n(b + a)/n, where n is the 
number of lobes in the pattern, and obtain an order of magnitude for the width of 
the jet-stream, 3y,. We have 

n@+a) - S Y W  
n 8wp0 K ’ 

or 

4-2 
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This gives yo of the order 0.6 cm, and the width of the stream of order 2 cm; this 
is in agreement with experiment. 

In  cylindrical polar co-ordinates, we can use equation (31) instead of (35), to 
obtain a solution of the form (37)) (38) and (39), with x replaced by 8, and with 
tanh @/yo) replaced by 

tanh (log r Y )  = ( r 2 y  - l)/(r2y + 1)) 
where y is an arbitrary constant. The necessary discontinuity with respect to 
8 makes this solution impracticable. 

4. A generalization of this solution 

form 
By inspection, it is easy to generalize the solution (36) of equation ( 3 5 )  to the 

(45) 

where Fl(x), F2(x), yo(”), yl(x) are arbitrary functions of x, and Gl(z), G2(z)  of z. 
The other variables are then given by 

We consider the effect of the new functions introduced into the solution, and shall 
show that most of them can be ignored. 

The function G2(z )  does not appear in the expression for the velocity; its effect 
is, then, to allow an overall variation of temperature (and hence pressure) in the 
vertical. As with the function Gl(z), it is difficult to find suitable boundary 
conditions, and it may be left arbitrary. No doubt the form of G,( z )  in experiments 
where heating is from below differs from that when the applied heating is purely 
radial. We note that the form of the function G2(z) does not alter the expression 
for the density difference (Ap)‘ across the stream, as given in (41). 

Since the width of the jet-stream is proportional to yo(x), we can regard this 
function as applying to a jet-stream of variable width. As stated in the previous 
section, the width of the stream in the experiments varies very little, and so we 
can take yo(.) = yo, a constant. In atmospheric jets, however, it may be necessary 
to  retain the function, as shown in 8 6. 
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The jet form of the solution now has its maximum value of u about y = yl(x), 
instead of about y = 0;  since the solution is based on the assumption that the jet 
is more or less parallel to y = 0, it follows that the two curves are nearly parallel. 
This means that &(x) cannot be large. We can introduce the function, then, to 
introduce a small curvature of the jet-stream. A large departure from y = 0 must 
be dealt with by means of a conformal transformation, as explained in 3 2. 

The nature of the function P2(x) can be seen most readily if we write 

f’(4 = www), 
so that 

01 

FIGURE 5. The cross-flow in a more general solution of the first approximation. 

Then, if yo is a constant, we have 

We see that the functionf ’(2) implies an overall variation of T with x, and a cross- 
flow term in v. As the stream travels from the hot to the cold boundary, we would 
expectf’(x) to decrease; it follows at once thatf”(x) is negative in this case, and 
a positive value of v results. Conversely, there is a negative value of v as the 
stream approaches the hot boundary. The cross-flow therefore corresponds to  
a small circulation of the whole fluid as shown in figure 5. This cross-flow is, of 
course, superposed on the out-flow or inflow corresponding to the solution of Q 3. 
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streamlines are the same, and are given by the expression 
We note that on the line y = yl(x), the slope of the isotherms and that of the 

( 5 2 )  
dY 
- = y;(x) +y;F;(x)f”(x). dx 

The line itself is not itself a streamline or an isotherm unless 

y;(z) +y;F;(z)f”(x) = 0. 

If this relation holds, however, the line is both a streamline and an isotherm, and 
this does not agree with experiment. 

5. The second approximation: the vertical velocity 
The variation of the vertical velocity with height is given in terms of the non- 

dimensional variables by (30); the corresponding relation in terms of the physical 
variables is 

where po is given in the first approximation. We can write this in the form 

- =-+-, aw awi aw, 
aZ aZ ax 

where 

is dependent on the inertia terms, and 

(54) 

(544 

is due to the viscosity. Since this term contains a derivative of po of higher order 
than the original equation for po, it is doubtful whether we can include the 
viscous effect in this form. A n  alternative method would be to replace the term 
va2u/ay2 in the x-momentum equation by Ku, where K is a friction constant. In  
this case we have 

Both forms of the term will be discussed. 

yo(%) = yo, a constant, we have 
Substituting the solution given in equations (50), (51) into (54a), and taking 
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We note that this can be expressed in the form 

This consists of two terms, the first corresponding to the jet part of the solution, 
and the second to the cross-flow part introduced by the function F2(x) of $4. 
The sign of the cross-flow part is therefore negative (suggesting downflow) when 
the stream approaches a cold boundary, and positive (suggesting upflow) when 
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FIGURE 6. The cross-circulation in the second approximation, due to inertia forces. 

the stream approaches a hot boundary. Its magnitude is large near y = yl(x), 
and falls off rapidly as [ y - yl(z)( increases; it is an even function of y - yl(z). 
The jet part of (55a)  has the same sign as zcw; it varies across the stream like 

when there is outflow in the first appsoximate solution (as in the solution of 
equation (43)); this gives values for w near z = 0 as shown in figure 6. This 
suggests a cross-circulation as shown by the dotted lines, and this is consistent 
with the observations of Riehl & Fultz (1957). It is assumed that the velocities 
given by the second term of (55  a )  are superposed on this circulation, but do not 
alter it essentially; certainly in the mean with respect to x, they will not do so, as 
the term changes sign. 
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The viscous term as given by (54c) becomes 

K Y - Yl(4 = - 3- u tanh ~~. 
WY 0 Yo 

This gives a cross-circulation similar in form to that of figure 6, though the 
maximum value of I aw,/azl occurs for a different value of I y - y1 (x) I from that for 
which lawi/&/ is a maximum. It follows that, if this is the correct form for the 
viscous terms, the cross-circulation is similar to that given by figure 6. 

/ A -  
/ 

f 

\ 
Hot 

.A 
\ \  

FIGURE 7. The cross-circulation in the second approximation, due to viscous forces 
proportional to aau/ay2. 

If we can keep the viscous term in the form (54b) ,  we have 

This suggests a vertical velocity distribution and cross-circulation as shown in 
figure 7. This is not outstandingly different from that of figure 6, at least in the 
centre of the stream. In any case the two circulations must be superposed, and it 
seems likely that the small circulations away from the centre in figure 7 will be 
swamped by larger velocities of figure 6; if this is so, figure 6 again gives a qualita- 
tive picture of the circulation. 
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The validity of expanding the solution in powers of 0 is not discussed here; it 
is aasumed that the expansion is possible, and the only justification given is that 
it gives a reasonable solution. 

6. The corresponding problem in the atmosphere 
Making assumptions similar to those of the first approximation in $2, and 

taking a similar choice of axes, the equations of motion and continuity in the 
atmosphere are 2wsingS.u = -ah/ay, 

2~ sin q5.  v = +ah/&, 

1 
-- P = ahlap, 

au av 
ax ay -+- = 0, 

where h = gz is the geopotential, and q5 is the latitude of the origin of co-ordinates. 
In  these equations, x, y and p are chosen as independent variables. The equation 
of state is now 

p = RpT, 

and the equation of heat transfer is still 

aT aT a2T 
U-+V- = K--. ax ay ay2 

The relation between T and p becomes 

where q = logp. The equations then reduce essentially to those of $ 2 ,  and we 
have the equation for h: 

ah a2h ah a2h a3h 
--__ +-- = 2w~sinq5- ay axaq ax ay aq ay2aq* 

A solution of exactly similar form for T ,  u, v is therefore obtained. 
The solution can be applied immediately to a local jet. In  this case, the varia- 

tion of the function yo(x) of $4 should be retained; it will decrease as x increases 
a t  the entry to the jet, and increase with x at the exit. The extra term in v which 
occurs in equation (48) by taking y/6(x) non-zero is an odd function of y - yl(x); 
this corresponds to an inflow to y = yl(x) at  the entrance, and an outflow at the 
exit, as would be expected. We note also that u is proportional to 1/[yo(x)]2, and 
so increases as the stream narrows. The mechanism is similar to that of the 
confluence theory suggested by Clapp & Namias (1949). 

It is more difficult to apply the same solution to a jet which circumvents the 
earth, as there are now no boundaries where it is reasonable to take a discon- 
tinuity. A solution of the equations which does not involve discontinuities would, 
however, be applicable to both cases. 
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7. Some difficulties of the present solution 
Any complete solution of the problem of the jet-stream must give a satisfactory 

account of the transfer of angular momentum, and of heat, across the fluid. The 
present theory is a t  first sight unsatisfactory in both respects, but since the 
solution does not pretend to describe the flow completely, this is not a serious 
defect. It may be of interest to give a brief indication of the transport of these 
quantities across the stream. 

The transfer of momentum behaves like the product uv, and is zero across the 
line y = yl(x), unless the function .F2(x) is retained. Even in this case the trans- 
port is in opposite directions across the stream, according to whether the stream 
approaches the inner or the outer boundary, so that the mean with respect 
to x is zero. But the effect of the boundaries where the stream touches them is of 
considerable importance in practice, and the present theory takes no account of 
this. 

NQ simple form for the transfer of heat across the stream exists, and it is 
impossible to interpret fully the appropriate expression to the solution of $4. 
It is clear, however, that in the mean with respect to x, the transfer of heat across 
the line y = yl(x) is entirely by conduction. Again, the exchange of heat between 
the stream and the boundaries, which is omitted from the solution, is of major 
importance. 

In order to describe the motion properly, then, we must find solutions for the 
parts of the jet-stream where it touches the boundaries, and also for the 
circulations in the remainder of the fluid. In  principle this should be possible, 
but in practice it seems to be intractable. 

The solution is of interest, however, because it does give a stream with the 
right kind of transverse variation in temperature and velocity. This suggests 
that the basic assumptions made in $ 2  are valid, and a more general solution 
should be sought. 

The author wishes to thank Prof. M. J. Lighthill for his continued interest in 
her work, and Prof. T. V. Davies for the benefit of several discussions during the 
preparation of this paper. 
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